US009223588B2

a2z United States Patent (10) Patent No.: US 9,223,588 B2
Adams et al. 45) Date of Patent: *Dec. 29, 2015
(54) APPLICATION WINDOW CLOSURE IN 6,118,451 A 9/2000 Alexander
RESPONSE TO EVENT IN PARENT WINDOW 6,192,361 B1* 272001 Huang 455/26.1
6,240,444 B1* 5/2001 Finetal. . .. 709/205
3k
(75) Tnventors: Michael C. Adams, Hampshire (GB): TLT07 B2+ 102000 Stechsbie sal. . 701114
Jonathan Phillips, Powys (GB); 7478245 B2* 1/2009 Allen o 713/185
Christopher J M Whyley, Hampshire 7,606,901 B2* 10/2009 Heymann etal. 709/225
(GB) 2004/0128557 Al* 7/2004 Saku_shima etal. . .. 713/202
2005/0172297 Al* 82005 Garcia 719/310
3k
(73) Assignee: International Business Machines P000/0319786 AL+ 15000 Vit atal T T
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 EP 0660219 A2 9/1994
U.S.C. 154(b) by 2651 days.
. OTHER PUBLICATIONS
This patent is subject to a terminal dis-
claimer. “Pending Apply / Close Program”; IBM Technical Disclosure Bul-
letin, Oct. 1991; vol. 34, No. 5; p. 384.
(21) Appl. No.: 11/782,899
* cited by examiner
(22) Filed: Jul. 25, 2007
(65) Prior Publication Data Primary Examiner — Linh K Pham
(74) Attorney, Agent, or Firm — Schmeiser, Olsen & Watts,
US 2007/0266320 Al Nov. 15,2007 LLP; Lisa Ulrich
Related U.S. Application Data
57 ABSTRACT
(62) Division of application No. 10/504,678, filed as
application No. PCT/GB03/00549 on Feb. 6, 2003, A method for closing a child application window of a parent
now Pat. No. 7,299,474. window. An indicator is instantiated in data loaded into the
parent window, followed by performance of a loop. In each
(51) Int.CL iteration of the loop: (a) if it is ascertained that the data
GO6F 3/00 (2006.01) currently loaded into the parent window includes the indica-
GO6F 9/44 (2006.01) tor, then pausing of a first number of seconds is followed by
(52) U.S.CL looping back to perform the next iteration, otherwise pausing
CPC oo GOG6F 9/4443 (2013.01) of a second number of seconds is followed by determining
(58) TField of Classification Search whether the data currently loaded into the parent window
USPC oo 710/310; 7157742 includes the indicator; (b) if it is determined that the data
See application file for complete search history. currently loaded into the parent window includes the indica-
tor, then pausing of the first number of seconds is followed by
(56) References Cited looping back to perform the next iteration, otherwise the loop

U.S. PATENT DOCUMENTS

5,819,042 A
5,881,236 A *

10/1998 Hansen

3/1999 Dickey 709/221

Lagged iato portalhome
pege

P

aURLIng

is exited and the child application window is closed during a
final iteration.

17 Claims, 4 Drawing Sheets

42

Closn ohild
gbplication windo

US 9,223,588 B2

Sheet 1 of 4

Dec. 29, 2015

U.S. Patent

v\

Trelgy Hoio

"noA jo} pley Buppiom
s1 Asuow noA] Ino pul pue Aoains ino sejdwon

&NoA 10} Bupjiom Asuoul InoA sj

2INS|a7] puR SLWOoH

SMBU PO 108j95

sooud aieys

~-sefebuow 1sele
s}nsal |jeqioo} pejsojeT] Ino 1e 00| & a)e|

smaN AW ¢awoy BulAoy

ST JoBluo))

dew a}ig

dep

Aligejieae soiA1eS

ows(g

dieH

Is)s1bay

uo uBig

Bupjueg puIsiU]

sBujAeg suoisUsd mmmmmto_z wcmﬁ wEmemm;E
-/

i

soueinsu] Bupueg

/ e

]

7

_ ! W / " wop EHOdAIT MR TH

N /L wa o

' 0l 6 8 1L L g 8 ﬁ/m
| Bi4

MIOM}BN

(53 8

US 9,223,588 B2

Sheet 2 of 4

Dec. 29, 2015

U.S. Patent

2Ins|aT] pue awWoH

SMBU PlIOM

sooud aleyg

s}nsal ||eqi00} palseleT]

smaN A

—oweg

109888 ~ dpeH]

--sabebuow 15018 118109y
INO 1B %00} B 9XE] uo ubig

A
¢awoy Buinop BSupjueg E%EE_

sBulreg suojsuey sebebuopy

SUBOT SJUSWISBAU] ©OUBINSU| mc&cmm

woo’jepiodAw

, \

RN

Asuow Jajsuel]
juswialels JapiQ
80UBJEQ MBIA
jJunosode jusung

A 4

sjunoooe sbuireg

1UNooJk Ualing

Sjunoooe mmm:/ms_ 9¢

v,N oM

¢ bi4

I,

T Ramne— 6z

Bupjueg jsuiayj
0} SWODJap

gz

U.S. Patent Dec. 29, 2015 Sheet 3 of 4

Fig 3

1
Logged into portal home
page

32

Instantiate 1
'‘KeepOpen'
variable

3
Launch a URL in a /3
‘child application

window'

US 9,223,588 B2

3
35
34 l |
Check
f
KeopOpon “>———Falso——s oo o
variable
40 True
v 38 37
Pause for n T Check
— | Tue 'KeepOpen'
seconds variable
——39
False
X
Close child

US 9,223,588 B2

Sheet 4 of 4

Dec. 29, 2015

U.S. Patent

JUNOJJY 1Uua.nyd

//
€5
SJUN0J2Y Mueq |euosiad
AN
N
2s
uoljesijddy eoueulH /
N
1S
obed aWoH jeuod
~.
N\
7 Bi 05

US 9,223,588 B2

1
APPLICATION WINDOW CLOSURE IN
RESPONSE TO EVENT IN PARENT WINDOW

This application is a divisional of Ser. No. 10/504,678, filed
Aug. 12, 2004 now U.S. Pat. No. 7,299,474, issued Nov. 20,
2007.

FIELD OF THE INVENTION

The present invention relates to the field of Internet tech-
nologies and the protection of user’s privacy when using an
application that enables a user to browse confidential or sen-
sitive information. More specifically the present invention
relates to a method for effecting the closure of an application
window in response to an event associated with its parent
window.

BACKGROUND OF THE INVENTION

Consumers use the services provided by the World Wide
Web to perform confidential transactions such as personal
banking, share dealing, buying goods on-line or launching
other services from within a portal environment.

A user can access these services over a network commu-
nicating with servers located throughout the world for obtain-
ing information. The information is stored on servers and
delivered to the user’s application from a server by sending
files or data packets to the requesting client application from
the network server resources.

When performing such transactions on line consumers are
concerned about the privacy and security of their information.
In particular the use of shared computers by a number of
different users at the same location increases these concerns
as confidential information is on display in open application
windows for other users to view.

When a number of users share the same computer it is
possible that a user may not log off or shut down their appli-
cation correctly and leave sensitive, confidential or personal
information on display in open application windows for a
subsequent user to view. The information contained in the
open application windows could be used by another user to
gain unauthorized access to another persons’ bank accounts,
share-dealing accounts or credit card details. This is a par-
ticular problem for network applications accessing confiden-
tial information on-line. The security concerns can mostly be
mitigated by explicit session management.

Hypertext Transfer Protocol—HTTP, which defines the
ways in which network applications interact with network
servers; performs session management. HTTP is a ‘request-
reply’ protocol in which the client sends a request message to
the server containing the URL of the required resource. The
server looks up the pathname and, if it exists, sends back the
file’s content in a reply to the client. HT'TP allows for content
negotiation and authentication.

Authentication involves a user entering a password; on first
attempt to access a password protected area, the server reply
contains a challenge applicable to that resource, for example
a digital signature. When it receives the challenge, the client
prompts the user to type a name and password and submits
associated credentials with subsequent requests.

However the need to establish and close a connection for
every request-reply exchange is expensive, both in overload-
ing the server and in sending too many messages over the
network. Persistent connections are used that remain open
over a series of request reply exchanges between client and
server. A persistent connection can be closed by a client or
server at any time by sending an indication to the other par-

10

15

20

25

30

35

40

45

50

55

60

65

2

ticipant. Servers may be configured to close a persistent con-
nection when it has been idle for a period of time. If an
application over a network has been idle for some time then
the connection will time out and the user will be required to
re-enter their authentication details into the application.

Session management can therefore be useful to stop an
unauthorized user gaining access to a variety of different
applications that a user may be logged on to, but session
management does not provide management of windows and
consequently an unauthorized user will be able to view any
confidential information on display in an open application
window.

Where an explicit log off has not occurred in the applica-
tion window there are a number of design implications that
can be considered when designing the user interface with
regards to the management of windows. Broadly these fall
into the following categories which are; not launching any
further application windows, only launching a single appli-
cation window at a given time in an application window that
exhibits modal behavior, or closing the application’s home
page window by using the application’s File—Exit route or
route or an operating system provided function such as the
‘X’ icon or task manager.

One method of providing the management of windows in
an application is to use an interpreted client side program-
ming language to provide the required functionality. Using an
interpreted client side programming language such as JavaS-
cript, the management of windows is limited to creating new
application windows with defined properties of height, width,
color and style. A client side programming language such as
JavaScript uses what are known as ‘modal windows’ to obtain
user feedback as to whether to perform specified operations.
A typical modal window contains one or more buttons yes,
no, cancel or okay and a question prompting the user, for
example ‘Do you wish to close this application?’. A modal
window will not go away until a user clicks on the yes, no,
cancel or okay button.

Modal application windows that are provided by client side
code have their limitations, for example when using the show-
ModalDialog() function in JavaScript. The showModialDia-
log() function creates a separate pop up application window
displaying the html page of a given URL. The application
window allows the user to address the data of that application
window before returning to the parent application window.

The showModalDialog() function is Internet Explorer®
browser specific and provides no support for the Netscape®
browser or the W3C Document Object Model. The show-
ModalDialog() function creates a completely standalone
application window which has no scriptable relationship with
the launching application window. On the Macintosh® oper-
ating system platform it is not possible to set the width, height
and color properties.

The onFocus() function in the parent window enables the
selection of the parent application window and captures the
event generated by the onFocus() function. The onFocus()
function carries out a check to determine whether the
launched application window exists. The onFocus event han-
dler executes the specified JavaScript code or function on the
occurrence of an onFocus() generated event. The onFocus
event occurs when a window, frame or form element is given
focus by the user. The onFocus() function works in the
Internet Explorer® browser and the Netscape 4. xx® browser,
the Macintosh® and the LINUX® platforms.

A disadvantage of'this function is the inability to minimize
the modal window in the Microsoft Windows® operating
system. The function can be fatal in the Netscape 6® browser.
When the close button on the parent application window is

US 9,223,588 B2

3

selected and the modal application window is open the parent
window is closed leaving the modal application window
open.

The repeated calling of the self.focus() function in a child
application window, allows a timer to start when a document
is loaded into the application window. The timer rapidly and
repeatedly calls the self.focus() function on the launched
window. A disadvantage of implementing the self.focus()
function is that it is modal to all other applications and the
function cannot access other launched application windows,
because there does not exist a scriptable relationship between
the application window and the modal window. The self.fo-
cus() function can also close the launched application win-
dow via the operating system function calls; thereby leaving
the launched window open, which potentially could contain a
transactional application in an invalid session.

The onFocus() or onClick() function in the parent window
calls the onOpenedWindow()function. Focusing or clicking
on the parent application window calls a check for the exist-
ence of a launched application window. If the check returns
true then the launched application window is brought forward
by windowname.focus() function. The windowname.focus()
function has the disadvantage that it does not produce con-
sistent results in the Internet Explorer 4® browser.

Compatibility problems are a major consideration when
creating applications using an interpreted client side lan-
guage. Different applications support different levels of
HTML and the amount of JavaScript functionality that an
application can support depends on the interpreter in the
application.

Another method of closing opened application windows is
by a system provided function such as the ‘X’ icon on the
application task bar, the task manager or by the use of the
File/Exit on the menu bar. Although this closes the opened
application window it provides no automation of the close
action of any network or non-network application window
launched from within the initial application window and
relies on the user to perform the action.

DISCLOSURE OF THE INVENTION

In accordance with the present invention there is now pro-
vided a method for effecting the closure of an application
window in response to an event associated with its parent
application window comprising the step of, polling on an
indicator associated with the parent of the application win-
dow and in the absence of said indicator accessing a system
provided function causing the closure of the application win-
dow. The present invention provides for the automatic closure
of'a child application window in response to an event associ-
ated with the parent of the application window. The present
invention closes the child application window when the par-
ent application window no longer exists. Each launched
application window takes on the role of a parent and a child
with the control of the application window associated with the
individual launched application windows. By associating
window control with the individual launched applications
windows, the launched application is able to detect whether
the application it was launched from exists or not.

Preferably the method provides for the polling of an indi-
cator of the parent of the application window for the existence
of'the indicator to determine whether the application window
is not to be closed. The present invention provides for the data
within the application window to be refreshed or reloaded
without closing the application window or subsequent
launched application windows that are still required by the
user.

25

30

40

45

4

Preferably the method provides for an event, which is
navigating to a resource outside of the application’s environ-
ment. If a resource is navigated to outside of the application’s
environment, the application window will close.

Preferably the method provides for monitoring the status of
the indicator of the parent of the application window. Prefer-
ably the method provides for an application window to oper-
ate in a network environment.

According to a second aspect of the present invention, a
computer program product comprising computer program
code stored on a computer readable storage medium, when
executed on a computer, the program code embodied therein
effects the closure of an application window in response to an
event occurring in the parent of the application window.

According to a third aspect of the present invention, there is
provided a system for effecting the closure of an application
windows in response to an event associated with its parent
application window, the system comprising means for polling
on an indicator associated with the parent of the application
window and in the absence of said indicator accessing a
system provided function thereby causing the closure of the
application window.

Preferably the system provides means for polling on said
indicator of the parent of the application window for the
existence of said indicator to determine whether the applica-
tion window is not to be closed. Preferably the system pro-
vides means for detecting the occurrence of an event, wherein
the event is navigating to a resource outside of the applica-
tion’s environment.

Preferably the system provides a means for, monitoring the
status of the indicator of the parent of the application window.
Preferably the system provides means for the parent of the
application window to be refreshed without destroying data
within the application window.

Preferably the system provides means for the parent of the
application window to be closed, without closing a required
application window.

The present invention when operating in a network envi-
ronment allows for the inherent problems of network page
delivery latency. When an application window is reloading or
refreshing data within its window, the invention comprises a
means for polling on the existence of an indicator to deter-
mine the indicators existence. If it does not exist, the system
pauses for m seconds before checking for the existence of the
indicator. This will allow for the data to be refreshed within
the application window without closing any dependent appli-
cation windows. This achieves a further advantage of not
destroying the data structure of the application’s window that
is being refreshed. Unlike a traditional desktop system the
flags exist throughout the user’s session and the data is not
lost. The present invention therefore does not need to keep a
list of what application windows are open and what event
handlers are in use at any given time.

The present invention further provides an advantage in that
the described method, computer program product and system
operates across a variety of different applications and is not
application specific.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described by way of example
only, with reference to the accompanying drawings, in which:

FIG. 1 illustrates a portal environment as accessed in a
network or non-network environment as found in the prior
art;

FIG. 2 illustrates multiple applications in a portal environ-
ment as found in the prior art;

US 9,223,588 B2

5

FIG. 3 shows a flow diagram illustrating the application
window closing method of the present invention;

FIG. 4 illustrates the relationship between multiple appli-
cation windows as described by the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a portal environment 1, accessed by a
network application 2 over a network 3, contains a plurality of
hypertext links to other services 4 for example banking 5,
insurance 6, investment 7, loans 8, pensions 10 and savings
11.

Clicking on the service’s hypertext link can access a ser-
vice 4. The application sends a request message 13 through
the network 3 to the network server 15 containing the URL 12
of the required resource. The network server 15 looks up the
pathname of the requested resource 12 and the network server
15 sends back the file contents in a reply message 14 through
the network 3 to the application 2. The requested resource 12
is loaded into an application window in the portal environ-
ment 1.

A plurality of services can be accessed and loaded into a
plurality of launched application windows whilst retaining
access to the portal home page in the initial application win-
dow.

Referring to FIG. 2, Internet banking is accessed by select-
ing the ‘sign on’ hypertext link 20 from the Internet banking
section of the portal home page 21. A new application win-
dow 22 is launched and displayed together with the portal
homepage 21. Confidential information is required to be input
into the application’s form fields 25 to identify the user to the
application. Once a application. Once a log-on has success-
fully completed a second application window 23 is launched,
displaying a list of options pertaining to the manage accounts
window, as a selection of hypertext links 26. To manage a
current account, the current account 26 hypertext link is
selected and a third application window 24 is launched. Fur-
ther options are displayed in the newly launched application
window. In the example of FIG. 2, by way of an example only,
a total of four nested application windows are open on the
computer screen. Hach application window is dependent on
the application window that it was launched from.

The present invention is equally applicable to both network
environments and non-network environments, where the
required information is contained on a server located on a
network or stored on a user’s computer disk storage system
and accessed off-line.

Referring now to FIG. 3, the portal home page application
is launched 31, displaying the hypertext links to other ser-
vices within or outside of the portal environment. A variable
called ‘KeepOpen’ is instantiated in the launched portal
homepage window 32. A dependent application window is
launched 33 by selecting a hypertext link from the portal
homepage 1.

The <body> tag in the html page in a launched application
window contains an onl.oad() function. The onl.oad() func-
tion calls an initial function. The initial function carries out a
check to ascertain if the data currently loaded into the appli-
cation’s parent window contains a variable named for
example ‘KeepOpen’ 34.

Ifthe initial function returns a value of “false’ 35, the initial
function ceases checking whether the variable exists for m
seconds 36. This allows for the parent application to be
refreshed by a user or another application.

After m seconds the initial function resumes its check on
the ‘KeepOpen’ variable 37. If the initial function finds that
the ‘KeepOpen’ variable exists, the initial function returns a

25

35

40

45

65

6

value of true 38. The initial function stops checking the exist-
ence of the variable for n seconds 39. After n seconds the
initial function resumes its check on the ‘KeepOpen’ variable.

The initial function continues through this process until the
initial function returns a value of ‘false’ 35. The initial func-
tion pauses checking on the ‘KeepOpen’ variable for m sec-
onds 36 to allow for the parent application being refreshed.
After m seconds the initial function resumes its check on the
‘KeepOpen’ variable. If the ‘KeepOpen’ variable does not
exist then a value of ‘false’ is returned 41 and the child
window is closed 42.

The present invention allows for the inherent problems of
network page delivery latency when an application is reload-
ing or refreshing data within its window. The present inven-
tion provides a method for polling on the existence of an
indicator to determine the indicators existence. If it does not
exist, the method pauses for m seconds before checking the
existence of the variable. This process allows for the data
within the application window to be refreshed without closing
any dependent application windows. This achieves a further
advantage of not destroying the data structure of the applica-
tion’s window that is being refreshed, unlike a traditional
desktop system the flags exist throughout the users session.
The present invention therefore does not need to keep a list of
what application windows are open and what event handlers
are in use at any given time.

Referring now to FIG. 4 of the present invention, a plurality
of application windows can be launched from within a portal
environment. Each application window is dependent on the
application that it was launched from.

When closing the finance application window 51 by navi-
gating to a resource outside of the portal environment or
clicking on a close button, the personal bank account appli-
cation window 52 and the current account application win-
dow 53 will be closed. The current account application win-
dow 53 is dependent on the personal bank account application
window 52. The personal bank account application window
52 is dependent on the finance application window 51. Each
window is dependent on the window that it was launched
from as the logic runs in the dependent window. Each
launched application window takes on the role of a parent and
child, but only if a further application window is launched
from within the parent application window therefore creating
a child application window.

When closing the current account application window 43,
only the current account application window 53 will close, as
there does not exist in this example a dependent window.

When closing the portal home page window 50, the finance
application window 51, the personal bank accounts applica-
tion window 52 and the current account application window
53 will close.

The invention claimed is:
1. A method for closing a child application window of a
parent window, said method comprising:
instantiating an indicator in data loaded into the parent
window;
after said instantiating the indicator, performing a loop,
wherein each iteration of the loop comprises:
ascertaining whether the data currently loaded into the
parent window comprises the indicator;
if said ascertaining ascertains that the data currently
loaded into the parent window comprises the indica-
tor then pausing a first number of seconds followed by
looping back to said ascertaining to perform the next
iteration of the loop, otherwise pausing a second num-

US 9,223,588 B2

7

ber of seconds followed by determining whether the
data currently loaded into the parent window includes
the indicator;

if said determining determines that the data currently
loaded into the parent window includes the indicator
then pausing the first number of seconds followed by
looping back to said ascertaining to perform the next
iteration of the loop, otherwise exiting the loop fol-
lowed by closing the child application window,

wherein during a final iteration of the loop, said exiting the

loop followed by said closing the child application win-

dow is performed.

2. The method of claim 1, wherein during a first iteration of
the loop said ascertaining ascertains that the data currently
loaded into the parent window comprises the indicator.

3. The method of claim 1, wherein during a first iteration of
the loop said ascertaining ascertains that the data currently
loaded into the parent window does not comprise the indica-
tor.

4. The method of claim 1, wherein during a first iteration of
the loop the parent window is not closed and is being
refreshed, which causes said ascertaining to not ascertain that
the indicator is comprised by the data currently loaded into
the parent window and further causes said determining, after
pausing the second number of seconds, to determine that the
indicator is comprised by the data currently loaded into the
parent window, resulting in not closing the child application
window during the first iteration.

5. The method of claim 1, wherein during the final iteration
of the loop the parent window is closed which causes said
ascertaining to not ascertain that the indicator is comprised by
the data currently loaded into the parent window and further
causes said determining, after pausing the second number of
seconds, to determine that the indicator is not comprised by
the data currently loaded into the parent window, resulting in
closing the child application window during the final itera-
tion.

6. The method of claim 5, wherein during the final iteration
of'the loop the parent window is closed in response to an event
associated with the parent window.

7. The method of claim 6, wherein the parent window is
associated with a portal home page of a parent application,
and wherein the event comprises navigation to a resource
outside of an environment of the parent application.

8. The method of claim 7, wherein the parent window is
associated with a portal home page of a parent application,
and wherein said launching the child application window is
performed by selecting a text link from the portal homepage.

9. The method of claim 1,

wherein the method further comprises prior to said per-

forming the loop: calling an initial function configured
to check for the existence of the indicator in the data
currently loaded into the parent window; and

wherein said ascertaining, said determining, said pausing

the first number of seconds, and said pausing the second
number of seconds are performed by the initial function.

10. The method of claim 9, wherein a <body>tag in a html
page in the child application window comprises an
onl.oad () function, and wherein said calling the initial func-
tion is performed by the onlLoad () function.

11. The method of claim 1, wherein the child application
window operates in a network environment.

12. The method of claim 1, wherein the parent window is a
finance application window pertaining to a finance applica-

10

15

20

25

30

35

40

45

50

55

tion, and wherein the child application window is a personal 65

bank accounts window pertaining to bank accounts associ-
ated with the finance application.

8

13. The method of claim 1, wherein the parent window is a
personal bank accounts window pertaining to bank accounts
associated with a finance application, and wherein the child
application window is a current account window pertaining to
a current bank account of the bank accounts.

14. A computer program product comprising a computer
program code stored on a non-transitory computer readable
storage medium, said program code, upon being executed on
a computer, performs a method for closing a child application
window of a parent window, said method comprising:

instantiating an indicator in data loaded into the parent

window;

after said instantiating the indicator, performing a loop,

wherein each iteration of the loop comprises;
ascertaining whether the data currently loaded into the
parent window comprises the indicator;
if said ascertaining ascertains that the data currently loaded
into the parent window comprises the indicator then
pausing a first number of seconds followed by looping
back to said ascertaining to perform the next iteration of
the loop, otherwise pausing a second number of seconds
followed by determining whether the data currently
loaded into the parent window includes the indicator;

if said determining determines that the data currently
loaded into the parent window includes the indicator
then pausing the first number of seconds followed by
looping back to said ascertaining to perform the next
iteration of the loop, otherwise exiting the loop followed
by closing the child application window,

wherein during a final iteration of the loop, said exiting the

loop followed by said closing the child application win-
dow is performed.

15. A system comprising a computer and a computer read-
able storage medium, said storage medium containing com-
puter program code that when executed on the computer
performs a method for closing a child application window of
a parent window, said method comprising:

instantiating an indicator in data loaded into the parent

window;

after said instantiating the indicator, performing a loop,

wherein each iteration of the loop comprises:
ascertaining whether the data currently loaded into the
parent window comprises the indicator;
if said ascertaining ascertains that the data currently loaded
into the parent window comprises the indicator then
pausing a first number of seconds followed by looping
back to said ascertaining to perform the next iteration of
the loop, otherwise pausing a second number of seconds
followed by determining whether the data currently
loaded into the parent window includes the indicator;

if said determining determines that the data currently
loaded into the parent window includes the indicator
then pausing the first number of seconds followed by
looping back to said ascertaining to perform the next
iteration of the loop, otherwise exiting the loop followed
by closing the child application window,

wherein during a final iteration of the loop, said exiting the

loop followed by said closing the child application win-
dow is performed.

16. The method of claim 3, wherein the method further
comprises:

during said pausing the second number of seconds, refresh-

ing the parent window.

17. The method of claim 1, wherein the first number of
seconds and the second number of seconds differ from each
other.

